Balanced Lineup
Time Limit: 5000MS | Memory Limit: 65536K | |
Total Submissions: 42489 | Accepted: 20000 | |
Case Time Limit: 2000MS |
Description
For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.
Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.
Input
Line 1: Two space-separated integers, N and Q. Lines 2.. N+1: Line i+1 contains a single integer that is the height of cow i Lines N+2.. N+ Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.
Output
Lines 1.. Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.
Sample Input
6 31734251 54 62 2
Sample Output
630 题目大意,给定一个数组,求任意给定区间的最大值与最小值只差 典型的线段树问题,但是由于输入输出的数据量很大,所以只能使用scanf,printf进行输入输出,如果使用cin,cout则会超时 我的ac代码:
#include#include #include using namespace std;struct node{ int r,l,vmin,vmax;}tree[600500];int a[155000];void createTree(int v,int l,int r){ tree[v].l=l; tree[v].r=r; if(l==r){ tree[v].vmax=tree[v].vmin=a[l]; return ; } int mid=(r+l)>>1; createTree(v<<1,l,mid); createTree((v<<1)|1,mid+1,r); tree[v].vmax=max(tree[v<<1].vmax,tree[(v<<1)|1].vmax); tree[v].vmin=min(tree[v<<1].vmin,tree[(v<<1)|1].vmin);}int findAns(int v,int l,int r,bool f){ if(tree[v].l==l&&tree[v].r==r){ if(f)return tree[v].vmin; return tree[v].vmax; } int mid=(tree[v].l+tree[v].r)>>1; if(r<=mid)return findAns(v<<1,l,r,f); if(l>mid) return findAns((v<<1)|1,l,r,f); if(f) return min(findAns(v<<1,l,mid,f),findAns((v<<1)|1,mid+1,r,f)); return max(findAns(v<<1,l,mid,f),findAns((v<<1)|1,mid+1,r,f));}int main(){ int N,Q,l,r; while(cin>>N>>Q){ for(int i=1;i<=N;i++) scanf("%d",&a[i]); createTree(1,1,N); while(Q--){ scanf("%d%d",&l,&r); printf("%d\n",findAns(1,l,r,0)-findAns(1,l,r,1)); } } return 0;}